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ScienceDirect
Metagenomic approaches to natural product discovery provide

the means to harvest bioactive small molecules synthesized by

environmental bacteria without the requirement of first culturing

these organisms. Advances in sequencing technologies and

general metagenomic methods are beginning to provide the

tools necessary to unlock the unexplored biosynthetic potential

encoded by the genomes of uncultured environmental

bacteria. Here, we highlight recent advances in sequence-

based and functional-based metagenomic approaches that

promise to facilitate antibiotic discovery from diverse

environmental microbiomes.
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Introduction
Many important antibiotic compounds have been iso-

lated from cultured bacteria; however, the vast majority

of bacteria remain recalcitrant to culturing [1]. It is

estimated that soil contains as many as 105 unique

species per gram and that uncultured microorganisms

outnumber cultured ones by two to three orders of

magnitude [2–4]. Metagenomics is a culture-indepen-

dent approach that seeks to access the biosynthetic

capacity of the ‘uncultured majority’ of bacterial species.

By directly capturing DNA from the environment

(environmental DNA, eDNA) and subsequently identi-

fying, isolating, and expressing biosynthetic gene clus-

ters in heterologous hosts, metagenomics has the

potential to provide a complete toolkit for bringing

biosynthetic diversity from the environment into drug

discovery pipelines. Two general approaches are

employed for interrogating and exploiting metagenomic
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eDNA for the production of small molecules. Sequence-

based approaches profile the biosynthetic content of

metagenomic samples, identify high-value targets, and

aid in the targeted recovery of complete biosynthetic

pathways from eDNA cosmid libraries. These recovered

clusters often require genetic manipulation to activate

small molecule production in a heterologous host. In

contrast, function-based approaches aim to identify

clones that are already biosynthetically active in a heter-

ologous host by detecting a clone-induced phenotype in

a host organism. This review covers recent technological

and experimental advances that are accelerating meta-

genomic small molecule discovery efforts with a focus on

(a) sequence homology-based techniques that facilitate

metagenome profiling and gene cluster recovery and (b)

advances in function-based methods that expedite the

identification of bioactive clones.

Sequence-based metagenomic studies
The precipitous reduction of DNA sequencing cost is

transforming the process of natural product drug discov-

ery. Whereas classic, culture-based studies required iso-

lation of compounds in the search for novel bioactivity,

the availability of sequence data has driven the devel-

opment of bioinformatic tools that can streamline the

identification of target gene clusters without requiring

chemical isolation. The methods used to identify gene

clusters of interest in metagenomes generally fall into one

of two categories: shotgun sequencing or PCR-based

sequence tag approaches.

Shotgun studies

Genome-based approaches to natural product discovery

stand to benefit from the proliferation of sequencing tech-

nologies and the accompanying bioinformatic analyses they

enable. The torrent of genome sequences of cultured

bacteria (>500/month at NCBI [5]) is sparking renewed

interest in natural product discovery. This is due in large

part to identification of previously unknown gene cluster in

many organisms, including those that have been thoroughly

studied [6]. Computational tools that scan assembled gen-

omes and identify biosynthetic gene clusters, such as Anti-

SMASH and np.searcher, are now able to predict the

expected natural products encoded by these clusters

[7�,8]. Application of such tools to all newly sequenced

genomes is becoming a routine part of new genome analysis,

providing a way to identify and rank new clusters for

genome mining. These tools can also be applied to

assembled contigs generated from metagenomic sources

and used to identify clusters from uncultured organisms, a
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strategy that has been particularly useful in the elucidation

of the small molecule producing clusters of uncultured

endosymbionts of marine [9�,10,11] and terrestrial [12�]
metazoans. The assembly of symbiont genomes from

metagenomic samples has been used to identify the gene

clusters encoding a potent cytotoxin, patellazole, a novel

polyketide, nosperin, as well as to guide the discovery of

a genus of bacterial symbionts, Entotheonella, with prom-

ising biosynthetic potential [9�,12�,13]. By coupling

deep-sequencing with other tools like whole genome

amplification [14] and single-cell isolation, extensive

biosynthetic information can be gleaned from otherwise

difficult-to-access organisms,  as is the case with the

recent elucidation of the apratoxin cluster from a marine

cyanobacterium [15]. The application of whole-genome

sequencing is a useful tool for the characterization of

endosymbionts and other relatively small metagenomes;

however, other techniques are necessary for the

complex metagenomes found in many natural environ-

ments like soil.

Sequence tag tools

A typical soil metagenome may contain 104–105 unique

species [2,3]. Shotgun assembly of such metagenomes is

still very challenging. Fortunately, substantial infor-

mation about biosynthetic genes can be obtained through

the use of simpler, PCR-based sequence tag approaches

[16]. Sequence tags are PCR amplicons generated using

primers targeting conserved biosynthetic genes that can

be used for phylogenetic analysis. They take advantage of

the modularity of biosynthetic systems, which have

evolved for horizontal transfer of useful phenotypes

(e.g. small molecule production), while facilitating the

creation of chemical novelty through well-established

genetic mechanisms [17,18]. Sequence tags can be

mapped to related sequences within known biosynthetic

clusters, which is the basis of the eSNAPD and NaPDoS

programs [19�,20]. At high degrees of sequence sim-

ilarity (eSNAPD: E-value <10e�40, NaPDoS: 90%

sequence identity), short sequence tags of only several

hundred base pairs can effectively match a read to a

reference gene cluster. Remarkably, the general struc-

ture of an entire gene cluster can generally be inferred

from the tag, as validated by the recovery of eDNA

clones predicted to encode novel glycopeptide, lipo-

peptide, and bis-intercalator natural products [19�]. The

true utility of these approaches is not in the identifi-

cation of known gene clusters but instead in rapidly

identifying gene clusters encoding congeners of valu-

able compounds, or in finding potentially novel gene

clusters that have remained undetected in the environ-

ment [19�].

Earlier applications of sequence tags to natural product

characterization were for genotyping of strains of the

prolific marine Actinomcyete genus Salinispora [21,22]. It

allowed a quick, inexpensive way to profile biosynthetic
www.sciencedirect.com 
potential of cultured organisms without requiring chemi-

cal isolation. The use of 454-pyrosequencing enabled

scaling of this approach to profile entire metagenomes.

Pyrosequencing of ketosynthase and condensation

domains from marine sponge metagenomes uncovered

hundreds of previously unknown sequences, including

several clades that had not been previously observed by

extensive Sanger sequencing of these sponge metagen-

omes [23�]. Furthermore, a head-to-head comparison of

shotgun sequencing of the same samples demonstrated

that PCR-based approaches were often 10–100 times

more sensitive in identifying unique sequences from

a metagenome of interest [23�]. Even greater biosyn-

thetic biodiversity was observed in desert soil micro-

biomes, where 1000s of unique adenylation domain

sequences were detected with only a fraction of them

shared among distinct microbiomes. A similar pattern

was observed for amplicons derived from Type I (keto-

synthase) and Type II (ketosynthase alpha) polyketide

biosynthesis, suggesting that soil metagenomes are

likely to be a rich source of novel bioactive compounds

[24,25]. While purified metagenomic DNA is suitable

for profiling the biosynthetic diversity, arrayed, large-

insert libraries are needed to facilitate isolation of the

identified pathways [26]. Prior to choosing a sample for

use in library construction, sequence tag-based methods

can be employed to screen eDNA to identify the most

biosynthetically rich environments. These same methods

can then be used to identify and guide the isolation of

specific clones from eDNA libraries. Clones recovered

from metagenomic libraries in this manner have been

heterologously expressed to yield new bioactive Type II

polyketide antibiotics [25,27]; new tryptophan-based

cytotoxins [28–30]; the marine-derived siderophores

bisucaberin and vibrioferrin [31,32]; modified versions

of the antitumor compound pederin [33]; cyanobacterial-

derived cyclic peptides [34]; and new members of the

microviridin family of ribosomally synthesized peptides

[35,36].

Future application of sequencing technology to

metagenomes

Several promising technologies may extend the power of

whole genome sequencing to metagenomes. Nano-pore

based sequencing boasts long read lengths that alleviate

the problem of assembling repetitive regions within the

genome and is quickly becoming the method of choice for

bacterial genome sequencing [37,38]. Long read sequenc-

ing technologies are of particular interest when sequenc-

ing natural product gene clusters due to the highly

repetitive nature of some biosynthetic gene clusters.

Additionally, single-cell and microdroplet-based methods

can now obtain sequence data from single cells, without

requiring the generation of an eDNA library, and can

facilitate the sequencing of the rare biosphere [39�,40].

These sequencing methods will expedite the in silico
characterization of naturally occurring biosynthetic gene
Current Opinion in Microbiology 2014, 19:70–75
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clusters and will push the molecule-discovery bottleneck

downstream to the activation of gene cluster expression.

Function-based metagenomics
Sequence-based metagenomics takes full advantage of

the information gained through advances in DNA se-

quencing. Unfortunately, pathways recovered by

sequence-based methods often require genetic refactor-

ing to activate clusters in a heterologous host. Functional

metagenomics provides a complementary approach that

bypasses the refactoring steps by screening for, and isolat-

ing, clones that are already active in the heterologous host

strain. A variety of functional screens have been developed

to date that rely on phenotypic detection using: pigmenta-

tion, enzymatic or antibiotic activity [41–43]; selection of

complementation-dependent reporters [44,45]; and sub-

strate induction (SIGEX and METREX) [46,47]. Direct

screening of fermentation broths has also been used,

although this approach becomes impractical with increas-

ing library size [48]. While functional metagenomics pre-

sents a powerful set of tools for identifying bioactive

compounds encoded by environmental microbiomes, the

size and the heterogeneous nature of eDNA libraries pose a

number of challenges that are currently being addressed

through a combination of technical advances and new

screening methods.

Library creation and maintenance

Recent advances in eDNA cloning and in broad-host

range vector design can facilitate the creation of eDNA

libraries and allow a single library to be screened in a

variety of hosts. In contrast to genome-based cosmid

libraries, creation of eDNA libraries can be challenging

due to difficulties associated with obtaining sufficient

quantities of high molecular weight (HMW) DNA free

of environmental inhibitors that can interfere with clon-

ing. A newly developed technology, synchronous coeffi-

cient of drag alteration (SCODA), has enabled recovery of

HMW eDNA from virtually any source by removing

interfering contaminants while concentrating dilute

samples [49�,50]. The cloning of eDNA into a broad-host

range shuttle vector facilitates transfer of eDNA libraries

into different hosts, where orthogonal collections of genes

are likely to be expressed. Vectors based on FC31 and

FBT1 phage integrase systems for transfer of libraries

into diverse Streptomyces spp. have existed for some time

[51,52]. More recently, RK2-derived vectors have been

constructed to allow movement of libraries into diverse

alpha, beta, and gamma proteobacterial species [53–55].

Creating libraries in shuttle vectors allows for conjugative

transfer of eDNA into a wide range of hosts, including

bacteria belonging to biosynthetically rich phyla like

Streptomyces and beta-proteobacteria [56].

Host improvement and new detection methods

It is thought that potential transcriptional, translational

and biochemical blocks can hinder the expression of an
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exogenous gene cluster in an individual host. Using

multiple heterologous hosts for functional screening

maximizes the chance of identifying bioactive molecules

by matching eDNA-derived clusters with native host

biochemistries. It is also possible to imagine adapting

hosts to more permissively express eDNA-derived bio-

synthetic gene clusters. Streptomyces appear to be one of

the most prolific secondary metabolite producers and, as

such, a number of strain improvement efforts have

focused on this genus [56]. Ribosome engineering and

use of mutant RNA polymerases have been employed in

Streptomyces spp., as well as myxobacteria and fungi, in an

effort to facilitate activation of cryptic pathways and

improve generic gene expression [57]. Other efforts to

activate silent gene clusters have focused on deleting

global negative regulators of biosynthesis, such as DasR,

or have used overexpression of positive regulators such as

LAL [58,59]. Similarly, overexpression of the alternative

sigma factor s54 has been used to facilitate expression of a

Type II polyketide synthase (PKS) gene cluster in Escher-
ichia coli [60]. In general, these host-manipulations result

in more promiscuous transcription and may therefore

allow for a higher percentage of cloned eDNA gene

clusters to be expressed in high throughput functional

screens.

The coupling of more sensitive natural product detection

tools with libraries hosted in improved strains should lead

to a greater number of eDNA-encoded compounds being

identified in functional screens. In recent years, mass-

spectrometry has emerged as a powerful and sensitive tool

for natural product screening. Improved selective detec-

tion techniques, such as those for phosphonic acid and

phosphonate containing compounds, are making it

possible to detect previously undetectable small mol-

ecules [61]. Similarly, a suite of tools termed peptido-

genomics and glyco-genomics, are able identify NRPS-

derived peptides and O-/N-glycosyl containing sugar

monomers directly from bacterial colonies on agar plates.

Mass-spec data is used in combination with bioinformatic

predictions of biosynthetic systems, providing a powerful

cross-referencing system that can be used to predict the

structure of potential metabolites [62,63]. So far, these

techniques have been applied only to cultured bacteria;

however, it is easy to imagine how such approaches could

be applied to direct functional screening of metagenomic

libraries.

Library enrichment

Analysis of sequenced genomes reveals that less than

2% of the genome is devoted to secondary metabolism

[64]; consequently, metagenomic DNA libraries are

sparsely populated with biosynthetic genes of interest.

Gene cluster enrichment strategies can be used to

simultaneously reduce the size and increase the bio-

synthetic density of eDNA libraries, thereby increasing

the efficiency of functional metagenomic applications
www.sciencedirect.com
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[46,65–68]. Complementation of 40-phosphopantethei-

nyl transferase (PPTase) activity has been recognized as

a valuable tool for gene cluster mining applications.

PPTases are required to generate holo-non-ribosomal

peptide synthetase (NRPS) and polyketide synthase

(PKS) enzymes and have been used in a phage display

strategy designed to recover NRPS/PKS sequences

[69]. More recently, PPTase gene complementation

has been successfully used for enriching E. coli and

Pseudomonas aeruginosa hosted libraries for NRPS/

PKS containing clones by linking it to production of

either a colored indicator molecule or a siderophore for

selective growth on low iron media [70,71�]. Using low-

iron selection strategy in E. coli, 50-fold enrichment in

NRPS/PKS gene content was achieved in just two

rounds of selection [71�].

Future directions in functional metagenomics

While sequence-based metagenomic screening

approaches are now quite robust and capable of targeting

the discovery of diverse novel molecules from many

different environments, functional metagenomic screen-

ing methods have not yet advanced to the extent that

enables this approach to rapidly harvest molecules from

the environment. We believe that three key advances are

necessary to bring functional metagenomics to maturity.

First, new model heterologous hosts must be identified

and engineered that are able to promiscuously activate a

more diverse set of biosynthetic gene clusters. Second, we

need improved DNA cloning methods that enable cap-

ture of complete gene clusters on individual eDNA

clones. Finally, new methods are needed for selectively

enriching eDNA libraries for clones containing a variety

of secondary metabolite genes. Together, these advances

will facilitate a substantial increase in the frequency and

diversity of small molecules with novel bioactivities that

can be harvested from the environment using functional

metagenomic approaches.

Conclusions
By taking a gene-based approach, metagenomics can

exploit the sequencing revolution and bypass many of

the traditional hurdles to drug discovery. While cultured

organisms have yielded many of our most important

antimicrobial agents, these organisms represent only a

small fraction of total microbial diversity. Metagenomic

methods provide a means to evaluate the biosynthetic

potential of the bacterial majority, thereby providing an

opportunity to find truly novel antimicrobials. While

there remain bottlenecks in the metagenomic drug-dis-

covery platform, such as the heterologous expression of

metagenomic pathways, these problems are not unique to

metagenomics and are also being tackled by the broader

microbiology and synthetic biology communities. As the

development of metagenomics-specific tools progresses

and the most promising, high-throughput, genome based

approaches are adopted by the field, metagenomics
www.sciencedirect.com 
should play an increasingly important role in the future

of antibiotic drug discovery.
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